Lexical

representations in theories of

word reading

Stéphan Tulkens

Overview

- 1. Word reading
 - a. Introduction
 - b. Common sense definition
- 2. The dictionary metaphor
 - a. The mental lexicon
 - b. The naive reader
- 3. Why the dictionary metaphor is false
 - a. Phonology
 - b. Meaning
- 4. The BIA+ model

Color legend

- ENGLISH
- DUTCH
- FRENCH

Word reading

Some effects

Most word reading is studied through *priming studies*

Words which are preceded with something related are read faster.

- Orthographic : Bear Beer
- **Phonological :** Fine Wine (Rhyme)
- Semantics : Chair Couch

Some effects

Also works across languages

- Orthographic : Poison Poisson
- **Phonological :** Feats Fiets (Homophony)
- Semantics : Desk Bureau
- Cognates : Wolf Wolf (Superfacilitation)

The cognate effect is unique for bilinguals

Opposite effects

Ambiguity causes inhibition:

- **Room :** English or Dutch?
- Lead : Verb or Noun?
- **Spin** : Animal or action?

Word reading

Common sense definition: The translation of groups of letters into meaning.

Word reading

Common sense definition: The translation of groups of letters into meaning.

D+O+G -> **Dog** -> Animal, Four legs, Loud

The Dictionary Metaphor

Mental Lexicon

"The **mental lexicon** is defined as a **mental** dictionary that contains information regarding a word's meaning, pronunciation, syntactic characteristics, and so on."

- Words are looked up in the "dictionary", which "releases" the information in the entry.
- The orthography is the "key", all other information is part of the entry.

Mental Lexicon

The mental lexicon is often used as a theoretical construct in psycholinguistic experiments

- Words are often described as being retrieved and stored.
- The orthography of the word is often implicitly construed as the *key* of a dictionary -> Primacy of Orthography

• The orthography of a word *is* the word

Computers and dictionaries

The dictionary metaphor naturally leads to a computer metaphor, with a memory bank, and key-value pairs.

The naive reader

In the naive reader, word reading is feed-forward computation

I took the lead

The naive reader

The naive reader is a computational theory of mind (CTM) implementation of word reading

- It involves sequential processing between isolated modules
- It only involves feed-forward activation between modules

The naive reader

Semantics, syntax, pragmatics don't affect reading

The Dictionary metaphor Revisited

Phonology

The way a word *sounds* influences its access.

- Homographs are read more slowly : Lead, Wind
- Homophones are easily confused
- **Cross-lingual evidence**
- Phonology plays a role in access

- : Their and There
- : Room and Roem

Solution

Add phonology to the key of the dictionary

Solution

By adding phonology to the key of the dictionary, we're saying that both readings of *lead* are different words

Phonology has been transferred from Entry to Key.

Semantics

Similarly, semantics plays an important role in bilingual access.

- Wolf is read quickly for Dutch English bilinguals
- **Spin** is read more slowly

The difference between these words is their shared semantics.

Semantics

These effects are too quick to be post-access.

Furthermore, semantic expectancies directly influence word access, also for monolinguals (Elman, 2009)

Solution

Add semantics to the key

Solution (?)

If we add semantics to the key of the dictionary, what is left in the entry?

A Real example

Bia Plus

A bilingual model of word reading (Dijkstra & Van Heuven, 2002)

- Contains separate representations for Orthography, Phonology, and Semantics.
- Representations inhibit and facilitate each other
 - Glass and Grass look alike, so inhibit each other
 - Beat sounds like Neat, so seeing Beat causes activation of Neat

BIA Plus

Representations

Example:

- **0** -> Room
- **P** -> /rum/ : /rom/
- **S** -> Space : Cooking

So, the key to the representation is **Room-/rum/-Space** for English, **Room-/rom/-Cooking**

Representations

However: authors maintain separate representations for languages -> Language is part of the key

- **O** -> Room-en : Room-nl
- **P** -> /rum/ : /rom/
- **S** -> Space : Substance for cooking

Keys become: Room-en-/rum/-Space and Room-nl-/rom/-Cooking

According to authors: no inhibition without 2 orthographic representations.

Homographs

If **Room** needs two separate representations to achieve inhibition, then what about **lead?**

0 -> Lead-en
P -> /led/ : /lid/
S -> ...

The observed inhibition for monolingual homographs is very similar to the one for bilingual homographs.

Homographs

Two options:

- Admit that phonology provides enough information
 a. Implies language no longer needed in the key
- 2. Do not account for interlingual evidence
 - a. Leads to a weak theory

Similar arguments can be made for **spin**, but with extensions to semantics.

 Monolinguals can differentiate between bank, so how does spin differ?

The take-away

Once one assumes the existence of representations with a static structure, problems arise in defining the difference between the **key** of a word and its **content**.

Even if the problem of the **key-content** distinction is removed, we saw that a real model of word reading uses a definition of word related primarily based on **orthography**